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Abstract
We have studied systematically the influence of particle–hole symmetric and asymmetric
kinetic terms on the ordered phases that we may observe competing or coexisting in a tetragonal
system. We show that there are precise patterns of triplets of ordered phases that are accessible
(i.e. it is impossible to observe two of them without the third one). We found a systematic way
to predict these patterns of states and tested it by identifying at least 16 different patterns of
three order parameters that necessarily coexist in the presence of the kinetic terms. We show
that there are two types of general equations governing the competition of all these triplets of
order parameters and we provide them.

1. Introduction

Almost all important functional materials undergo a pleiad
of phases that under certain conditions may coexist.
Controlling the parameters leading to coexistence is of
primary importance as it can provide access to new intriguing
phenomena and functionalities. Already in the early eighties,
systematic theoretical investigations of the coexistence of
two ordered electronic phases appeared [1–9], motivated
essentially by the general problem of anti-ferromagnetic
superconductivity that emerged in organic superconductors
and heavy fermions. Numerous theoretical studies of the
coexistence and competition of two phases continue to appear
as the number of such experimental paradigms multiplies.

It has been a general conclusion from all the above
studies that we must take into consideration on the same
footing the two order parameters (OPs) that compete and
may eventually coexist, otherwise we miss qualitatively new
phenomena associated with this competition. However, as we
shall show below, additional order parameters may coexist as
well, and the need to include them is equally important. In fact,
we will show that the particle–hole symmetric and asymmetric
kinetic terms (KTs) of the Hamiltonian, impose patterns of
three order parameters (or triplets of order parameters) that are
unavoidable. Whenever two of the order parameters coexist
the third one appears as well. Therefore, we must necessarily
consider all three order parameters simultaneously.

We have considered a tetragonal tight binding system
and we have studied 16 cases of phase coexistence involving

various types of ferromagnetism, density waves [10–14] and
superconductivity [15]. In the case of a tetragonal lattice,
the possible OPs that can be observed along with the kinetic
terms are 63, generating an SU(8) Lie algebra [16]. The
OPs we have studied, were chosen among those of an SO(8)

subalgebra [17, 18] that describes only even parity order
parameters and is relevant for the nearly half-filled case. We
have observed that the kinetic terms impose phases that do
not initially exist in the Hamiltonian. These phases ought to
have been already included in the Hamiltonian from the very
beginning in order to study the system consistently. We have
performed this procedure in all cases that we have studied and
we obtained in all cases the self-consistence equations of all
the order parameters involving the induced order. We observed
that the two initial order parameters, the induced order and
the mixing kinetic term satisfy a system of self-consistence
equations that entangles their dynamics. They constitute closed
sets of order parameters that need to be treated on the same
footing.

Through detailed examination of a number of systems
with many phases emphasizing on the role of particle–hole
symmetric and asymmetric kinetic terms, we managed to
extract a simple empirical rule which helped us to predict
patterns of OPs that coexist when the kinetic terms are properly
taken into account. According to this rule the matrix product
of the matrix representations of the two initially coexisting
order parameters and the mixing kinetic term yields the matrix
representation of the induced phase. Equivalently, the matrix
product of the three involved order parameters yields the
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Table 1. The 28 OPs that form an SO(8) spectrum generating
algebra and would be accessible in a tetragonal system close to
half-filling. In the next sections we demonstrate that particle–hole
asymmetric and symmetric kinetic terms impose various patterns of
triplets of the following OPs.

Order parameter Type

γ Nearest neighbors hopping term
δ Next nearest neighbors hopping term
Fx,y,z Ferromagnet along x, y, z-axis
Ax,y,z d-wave ferromagnet along x, y, z-axis
W Charge density wave
Jc Orbital anti-ferromagnet
Mx,y,z Spin density wave along x, y, z-axis
J s

x,y,z Spin nematic along x, y, z-axis
�s s-wave SC (q = 0)
�d d-wave SC (q = 0)
η s-wave SC (q = Q)
�x,y,z d-wave SC along x, y, z-axis (q = Q)

mixing KT matrix. In all cases that were selected according
to this rule the predicted phase coexistence was confirmed.

We have to remark that although the above rule is quite
expected if we want a non-zero mean value for the induced
phase, there is no way to be certain that if this rule stands
for a specific set of order parameters then we must obtain
the coexistence described above unless we do the calculations.
Indeed, only by considering on a suitable spinor formalism the
relevant triplets of order parameters within a BCS like mean
field approach and extracting self-consistent gap equations
we were able to identify definitely that these states appear
altogether as an unavoidable pattern.

2. Results

We consider all even parity OPs that are possible in a tetragonal
system and may be relevant for discussing a number of heavy
fermion materials as well as high-Tc cuprates. To describe
in a unified way the coexistence of various OPs we need to
introduce an eight component spinor formalism. We introduce
the following spinor

�
†
k = ( α

†
k↑ α

†
k↓ α

†
k+Q↑ α

†
k+Q↓ α−k↑

α−k↓ α−k−Q↑ α−k−Q↓ ) (1)

where αks/α
†
ks are the destruction/creation operators of an

electron of momentum k in the reduced Brillouin zone and
spin projection s = ↑,↓. This enlargement of the spinor
space allows the simultaneous description of ferromagnetism,
zone-center (zero Cooper-pair momentum) and staggered
(finite Cooper-pair momentum) superconductivity, charge and
spin density waves. The density waves and the staggered
superconductivity are characterized by the wavevector Q =
(π, π) which is the best nesting vector close to half-filling.
To work in this eight dimensional spinor space we consider
a base formed by the Kronecker products of the unit matrix
and three of the usual Pauli matrices τi , ρ j , σk where i, j, k =
1, 2, 3.

The possible order parameters arising from the preceding
spinor theory are 4 × 4 × 4 = 64. If we demand that our
Hamiltonian is traceless we are left with 63 order parameters

Table 2. Triplets of order parameters that form patterns imposed by
the kinetic terms mentioned in the last column. In all cases we have
the same system of self-consistence equations for the OPs, provided
we replace the corresponding OPs of the same column.

OP 1 OP 2 OP 3 Mixing KT

Mz �d �z δ
W �s η δ
J s

y �s �y δ

�z �s Mz γ
η �d W γ
�y �d J s

y γ

(including KT) that constitute the generators of an SU(8)

spectrum generating algebra [16]. In the case of tetragonal
systems close to half-filling, equivalence of the Brillouin zone
points (π, 0) ≡ ((−π, 0)) and (0, π) ≡ (0,−π) imposes that
the order parameters have even parity. The OPs satisfying this
constraint are 28 (including KT) and form an SO(8) spectrum
generating algebra [17, 18]. The OPs that we have considered
in this study were chosen among those 28 identified in table 1
with their symbols adopted here.

We note that in table 1 there are 16 OPs corresponding
to particle–hole condensates including the KTs and 12
superconducting states (including their complex conjugates).
Moreover, 8 of the 12 superconducting OPs represent
staggered SC in which the pairs have a finite total center-
of-mass momentum (q = Q) bearing similarities to the
Fulde–Ferrel states [19]. These quite exotic states are
superconducting states with modulated superfluid density and
as we will show below, they should play a crucial role in any
anti-ferromagnetic SC state.

We report here 16 different patterns of OPs that are
imposed by the particle–hole symmetric and asymmetric
kinetic terms. They can be classified into 3 different types of
OP mixing that according to their properties can be merged into
two general groups. In all these cases we present the typical
system of self-consistence equations that provide the OPs and
we identify the kinetic terms that are responsible for the OPs
mixing.

2.1. First type of OPs mixing

In this first case, we consider that the Hamiltonian consists of
the two kinetic terms and three order parameters. These order
parameters have been chosen according to the empirical rule
mentioned in section 1 i.e. the matrix product of the three order
parameters yields the kinetic term that causes their mixing. In
table 2 we present the different combinations that fall into this
class.

We consider explicitly the first combination of the
preceding table in order to demonstrate the general equations
governing the phase coexistence and competition in the above
patterns. In fact, the self-consistence equations that result
are the same for all six patterns provided we replace the
corresponding OPs that are in the same column. The
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Hamiltonian corresponding to the first case is given by the
relation

H =
∑

k

�
†
k(γ τ3ρ3 + δτ3 − Mzτ3ρ1σ3

− �zτ2 ρ2σ1 + �dτ2 ρ3σ2 )�k (2)

where we have suppressed the momentum index k and the
Kronecker product’s symbol ⊗. The energy eigenvalues are

E± =
√

M2
z + γ 2 + δ2 + �2

z + �2
d ± 2

√
X . (3)

where X = (M2
z + γ 2)δ2 − 2δMz�z�d + (�2

d + γ 2)�2
z .

The self-consistence equations of the order parameters are
the following

Mz = 1

4

∑

k′

V Mz
kk′

E2+ − E2−

×
{

Mz(E2+ − E2− + 4δ2) − 4δ�d�z

E+
tanh

(
E+
2T

)

+ Mz(E2+ − E2− − 4δ2) + 4δ�d�z

E−
tanh

(
E−
2T

)}
(4)

�d = 1

4

∑

k′

V
�d
kk′

E2+ − E2−

×
{

�d(E2+ − E2− + 4�2
z) − 4δMz�z

E+
tanh

(
E+
2T

)

+ �d(E2+ − E2− − 4�2
z ) + 4δMz�z

E−
tanh

(
E−
2T

)}
(5)

�z = 1

4

∑

k′

V �z

kk′

E2+ − E2−

×
{

�z(E2+ − E2− + 4γ 2 + 4�2
d) − 4δ�d Mz

E+
tanh

(
E+
2T

)

+ �z(E2+ − E2− − 4γ 2 − 4�2
d) + 4δ�d Mz

E−

× tanh

(
E−
2T

)}
(6)

where the OPs and KTs depend on k′. The mixing role of
the kinetic term is explicit already in the form of the equation.
In fact, the usual BCS equations for each one of the order
parameters are expected to have the general form

�k =
∑

k′
f (Ek′, T )Vkk′�k′ (7)

where f is a function of the energy dispersion E and
temperature T . Each BCS equation supports solutions of zero
and non-zero order parameter, depending on the temperature.
On the other hand, in our case each OP self-consistence
equation has the general form

�k =
∑

k′
Vk,k′

{
f (Ek′, T )�k′ + g(Ek′, T )mk′ Ak′ Bk′

}
(8)

where f, g are function of the energy dispersion and
temperature, mk is the mixing kinetic term and Ak and Bk are
the other two OPs. We observe that a solution of zero order
parameter is not possible unless the mixing term or one at least
of the other order parameters is also zero. This suggests that
in the presence of the mixing kinetic term we cannot have two
order parameters without the third. The three order parameters
and the mixing term constitute a group that must be treated as
an independent subsystem on the same footing.

It is interesting to obtain the self-consistence equations
when the kinetic term that does not contribute to the mixing
is set to zero. In this case, the eigenenergies obtain the form

E+ =
√

(Mz + δ)2 + (�d − �z)2 (9)

E− =
√

(Mz − δ)2 + (�d + �z)2 (10)

while the first self-consistence equation becomes

Mz =
∑

k′
V Mz

kk′

{
Mz + δ√

(Mz + δ)2 + (�d − �z)2
tanh

(
E+
2T

)

+ Mz − δ√
(Mz − δ)2 + (�d + �z)2

tanh

(
E−
2T

)}
. (11)

2.2. Second type of OPs mixing

The second case involves a different coexistence pattern
involving once again three order parameters and a mixing
kinetic term. The following table contains the combinations
belonging in this class.

Once again we present the typical results of one of these
cases, specifically we consider the first. The Hamiltonian is

H =
∑

k

�
†
k(γ τ3 ρ3 + δτ3 − �yτ2 ρ2

− �xτ2 ρ2σ3 − Fzτ3 σ3 )�k. (12)

The corresponding quasi-particle poles are

E±+ = γ ±
√

(Fz − δ)2 + (�x + �y)2 (13)

E±− = γ ±
√

(Fz + δ)2 +
(
�x − �y

)2
. (14)

Finally, we obtain the self-consistence equations

Fz = 1

8

∑

k′
V Fz

kk′

⎧
⎨

⎩
Fz − δ√

(Fz − δ)2 + (�x + �y)2

× M

[
tanh

(
E++
2T

)
− tanh

(
E−+
2T

)]

+ Fz + δ√
(Fz + δ)2 + (�x − �y)2

×
[

tanh

(
E+−
2T

)
− tanh

(
E−−
2T

)]⎫⎬

⎭ (15)

3
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�x = 1

8

∑

k′
V

�x
kk′

⎧
⎨

⎩
�x + �y√

(�x + �y)2 + (Fz − δ)2

×
[

tanh

(
E++
2T

)
− tanh

(
E−+
2T

)]

+ �x − �y√
(�x − �y)2 + (Fz + δ)2

×
[

tanh

(
E−−
2T

)
− tanh

(
E+−
2T

)]⎫⎬

⎭ (16)

�y = 1

8

∑

k′
V

�y

kk′

⎧
⎨

⎩
�x + �y√

(�x + �y)2 + (δ − Fz)2

×
[

tanh

(
E++
2T

)
− tanh

(
E−+
2T

)]

+ �x − �y√
(�x − �y)2 + (Fz + δ)2

×
[

tanh

(
E+−
2T

)
− tanh

(
E−−
2T

)]⎫⎬

⎭ . (17)

As one can observe, the above equations do not have
the general form (8) in which the mixing role of the relevant
kinetic term is explicit as in the previous case. However,
by performing a Taylor expansion with respect to the order
parameters up to quadratic order terms we can show that such
a relation does exist. These self-consistence equations imply
once again that if the mixing term is present we cannot have
the two order parameters without the third.

Indeed, let us consider (15) supposing that Fz is absent
from the initial Hamiltonian. Then we set Fz = 0 in the right
side of (15) and this equation will now provide the induced part
of Fz :

F induced
z ∼

∑

k′

⎧
⎨

⎩
−δ√

δ2 + (�x + �y)2

×
[

tanh

(
E ′++
2T

)
− tanh

(
E ′−+
2T

)]

+ δ√
δ2 + (�x − �y)2

×
[

tanh

(
E ′+−
2T

)
− tanh

(
E ′−−
2T

)]⎫⎬

⎭ (18)

where we have introduced the new energy dispersions E ′, by
setting Fz = 0:

E ′
±+ = γ ±

√
δ2 + (�x + �y)2 (19)

E ′
±− = γ ±

√
δ2 + (�x − �y)2. (20)

A zero induced Fz term is expected if one of the two
following conditions holds. On one hand, we may have δ = 0,
in which case we confirm that we will not have induced Fz if
the mixing kinetic term vanishes. On the other hand, we may
have E±+ = E∓+ and E±− = E∓−. This last condition can
be realized only when �x = 0 or �y = 0. Consequently
we conclude that if the mixing term is present and two order
parameters are non-zero we have an induced order Fz . i.e. the
three phases coexist.

It is instructive to derive here as well, the self-consistence
equations when the irrelevant, to the mixing, kinetic term
vanishes.

Ẽ±+ = Eγ=0
±+ = ±

√
(Fz − δ)2 + (�x + �y)2 (21)

Ẽ±− = Eγ=0
±− = ±

√
(Fz + δ)2 + (�x − �y)2. (22)

We observe that Ẽ+± = −Ẽ−∓. This equality simplifies
the self-consistence equations. For example we have

Fz = 1

4

∑

i′
V Fz

kk′

⎧
⎨

⎩
Fz − δ√

(Fz − δ)2 + (�x + �y)2
tanh

(
Ẽ++
2T

)

+ Fz + δ√
(Fz + δ)2 + (

�x − �y
)2

tanh

(
Ẽ+−
2T

)⎫⎬

⎭ . (23)

Quite remarkably, we have encountered the same form of
self-consistence equation in section 2.1 when the non-mixing
kinetic term was set to zero. This common feature reveals
that these two cases share the same mixing ‘mechanism’,
constituting specific examples of a more general coexistence
pattern.

The next pattern that we shall discuss here is the
coexistence of two specific phases, s-wave and d-wave SC OPs
in the presence of the two kinetic terms, where the kinetic terms
play both the role of the mixing terms and the OPs at the same
time. As far as the form of the equations that we derive, they
belong to the same general coexistence pattern like the one
reported just above. The Hamiltonian is

H =
∑

k

�
†
k

(
γ τ3 ρ3 + δτ3 − �dτ2 ρ3σ2 − �s τ2 σ2

)
�k.

(24)
The poles of the Greens function are

E± =
√

(�s ± �d)
2 + (γ ± δ)2. (25)

It is evident that they have the form of the previous cases
sections 2.1 and 2.2 when we set the irrelevant kinetic terms
equal to zero. The self-consistence equations obey the same
rule

�d = 1

4

∑

k′
V �d

kk′

⎧
⎨

⎩
�d + �s√

(�s + �d)
2 + (γ + δ)2

tanh

(
E+
2T

)

+ �d − �s√
(�s − �d)

2 + (γ − δ)2
tanh

(
E−
2T

)⎫⎬

⎭

4



J. Phys.: Condens. Matter 20 (2008) 434234 S Tsonis et al

Table 3. The same as in table 2.

OP 1 OP 2 OP 3 Mixing KT

Fz �x �y δ
Az η �z δ
Fy J s

x Mz γ
Az W Mz γ

Table 4. Distinct type of mixing compared to the one related to
sections 2.1 and 2.2. The following combinations obey the same
system of self-consistence equations.

OP 1 OP 2 OP 3 Mixing KT

Fz W Mz δ

Fz Jc J s
z δ

Ax J s
y Mz δ

Fz η �z γ

�s = 1

4

∑

k′
V

�s
kk′

⎧
⎨

⎩
�s + �d√

(�s + �d)
2 + (γ + δ)2

tanh

(
E+
2T

)

+ �s − �d√
(�s − �d)

2 + (γ − δ)2
tanh

(
E−
2T

)⎫⎬

⎭ . (26)

2.3. Third type of OPs mixing

The next case we consider has distinct properties from the
preceding encountered in sections 2.1 and 2.2. We have found
that the following combinations all have the same coexistence
pattern.

The example in this type of mixing is the first of table 4,
which is described by the Hamiltonian

H =
∑

k

�
†
k

(
γ τ3 ρ3 + δτ3 − Mzτ3ρ1σ3

− Wτ3 ρ1 − Fzτ3 σ3

)
�k (27)

with corresponding eigenenergies

E±+ = (Fz ∓ δ) +
√

(Mz ± W )2 + γ 2 (28)

E±− = (Fz ∓ δ) −
√

(Mz ± W )2 + γ 2. (29)

We observe that the structure of the poles are different
from the ones found in sections 2.1 and 2.2. The self-
consistence equations are given from the following relations

Fz = 1

8

∑

k′
V Fz

kk′

{
tanh

(
E++
2T

)
+ tanh

(
E+−
2T

)

+ tanh

(
E−+
2T

)
+ tanh

(
E−−
2T

)}
(30)

Mz = 1

8

∑

k′
V Mz

kk′

{
Mz + W√

(Mz + W )2 + γ 2

[
tanh

(
E++
2T

)

− tanh

(
E+−
2T

)]
+ Mz − W√

(Mz − W )2 + γ 2

×
[

tanh

(
E−+
2T

)
− tanh

(
E−−
2T

)]}
(31)

W = 1

8

∑

k′
V W

kk′

{
Mz + W√

(Mz + W )2 + γ 2

[
tanh

(
E++
2T

)

− tanh

(
E+−
2T

)]
+ Mz − W√

(Mz − W )2 + γ 2

×
[

tanh

(
E−−
2T

)
− tanh

(
E−+
2T

)]}
. (32)

We have to remark that equations (31) and (32) have
similarities with the results of the previous sections. Though,
equation (30) is totally different. Close observation of the
equation and the eigenenergies, shows that great simplification
occurs when γ = 0. In this case we have

E±+ = (Fz ∓ δ) + (Mz ± W ) (33)

E±− = (Fz ∓ δ) − (Mz ± W ) (34)

and as far as the self-consistence equations are concerned

Fz = 1

8

∑

k′
V

Fz

kk′

{
tanh

(
E++
2T

)
+ tanh

(
E+−
2T

)

+ tanh

(
E−+
2T

)
+ tanh

(
E−−
2T

)}
(35)

Mz = 1

8

∑

k′
V Mz

kk′

{
tanh

(
E++
2T

)
− tanh

(
E+−
2T

)

+ tanh

(
E−+
2T

)
− tanh

(
E−−
2T

)}
(36)

W = 1

8

∑

k′
V W

kk′

{
tanh

(
E++
2T

)
− tanh

(
E+−
2T

)

− tanh

(
E−+
2T

)
+ tanh

(
E−−
2T

)}
. (37)

According to what he have been taught from the previous
sections, the symmetry the above equations present, implies
that we have reached to a triplet of order parameters that
necessarily coexist in the presence of the corresponding mixing
kinetic term. This can be shown as follows. Any of these order
parameters can be zero only if the spectrum is particle–hole
symmetric. This occurs only when two out of the four terms
are zero. Consequently if three of these terms are non-zero the
fourth will be non-zero, too.

The final case we present, has two order parameters and
the two kinetic terms. As we shall see it belongs to the same
coexistence pattern of the above cases. The Hamiltonian is

H =
∑

k

�
†
k

(
γ τ3 ρ3 + δτ3 + Axτ3 ρ3σ1 + Fx τ3 σ1

)
�k.

(38)

5



J. Phys.: Condens. Matter 20 (2008) 434234 S Tsonis et al

Table 5. The two distinct coexistence schemes.

Scheme OP 1 OP 2 OP 3 Mixing KT

I Mz �d �z δ
I W �s η δ
I J s

y �s �y δ

I �z �s Mz γ
I η �d W γ
I �y �d J s

y γ

I Fz �x �y δ
I Az η �z δ
I Fy J s

x Mz γ
I Az W Mz γ
I �s �d δ γ
II Fz W Mz δ
II Fz Jc J s

z δ
II Ax J s

y Mz δ

II Fz η �z γ
II Fx Ax δ γ

The eigenenergies are equal to

E±+ = (Ax ± Fx ) + (δ ± γ ) (39)

E±− = (Ax ± Fx ) − (δ ± γ ). (40)

The corresponding self-consistence equations are

Ax = 1

8

∑

k′
V

Ax
kk′

{
tanh

(
E++
2T

)
+ tanh

(
E+−
2T

)

+ tanh

(
E−+
2T

)
+ tanh

(
E−−
2T

)}
(41)

Fx = 1

8

∑

k′
V

Fx
kk′

{
tanh

(
E++
2T

)
− tanh

(
E+−
2T

)

+ tanh

(
E−+
2T

)
− tanh

(
E−−
2T

)}
. (42)

3. Discussion

Having studied 16 cases of coexisting OPs in the presence of
the particle–hole symmetric and asymmetric KTs, we have
found 3 different types of coexistence patterns. The 11
cases studied in sections 2.1 and 2.2 seem to have the same
type of coexistence ‘mechanism’ belonging to a more general
Coexistence Scheme. On the other hand the 5 cases that we
presented in section 2.3 originate by a distinct coexistence
‘mechanism’. Consequently, we conclude that the 16 cases
we studied merge into two general Coexistence Schemes as in
table 5.

Moreover, we have found that special coexistence patterns
can be observed even when he have only 2 OPs. In this case
the kinetic terms play a dual role. They behave as the mixing
KTs and the members of triplets of coexisting OPs. In that
case, with both kinetic terms present we cannot observe one
of the two OPs without the second one. For example, in the
presence of both kinetic terms, d-wave SC coexists with s-
wave SC ! This shows that the generation of these patterns is
not a special property owned by the KTs. Consequently, these
Coexistence Schemes originate due to more general relations
that are satisfied by quartets of the SU(8) generators. We

expect that other terms, apart from the KTs could play the role
of the mixing terms and produce different type of coexistence
patterns. We will present elsewhere a complete account of
all patterns of coexisting states that correspond to the above
mentioned quartets.

Finally, apart from the general conclusions that we
inferred about phase coexistence, we obtained valuable results
concerning specific coexisting triplets of OPs that may
correspond to the physical situation in numerous correlated
systems of interest. Particularly, we have observed that:

• Density waves, zone-center superconductivity (q = 0)

and staggered superconductivity (q = Q) constitute a
triplet of OPs that necessarily coexist in the presence of
the KTs. Such an observation is of general relevance
for all anti-ferromagnetic superconductors, a category of
materials that includes organics, heavy fermions, high-Tc

cuprates etc.
• Ferromagnetism, charge density waves and spin density

waves constitute another triplet of OPs that necessarily
coexist in the presence of the asymmetric KT. This
observation has already been reported before and
shown to be related with the colossal magnetoresistance
phenomenon [20].

• s-wave and d-wave superconducting OPs always coexist in
the combined presence of the symmetric and asymmetric
KTs. Needless to note that high-Tc cuprates as well as
numerous heavy fermion systems are believed to be d-
wave SC. Our observations imply that a pure d-wave SC
state is an oversimplification.

• s-wave and d-wave ferromagnetic OPs always coexist in
the combined presence of the symmetric and asymmetric
KTs. The implications of this observation need to be
investigated.
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